Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Infect Dis ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: covidwho-20245384

RESUMEN

BACKGROUND: The ongoing SARS-CoV-2 pandemic posed an unpreceded threat to the management of other pandemics such as HIV-1 in the United States. The full impact of the SARS-CoV-2 pandemic on the HIV-1 pandemic needs to be evaluated. METHODS: All individuals with newly reported HIV-1 diagnoses from NC State Laboratory of Public Health were enrolled in this prospective observational study from 2018 to 2021. We used a sequencing-based recency assay to identify recent HIV-1 infections and to determine the days post infection (DPI) for each person at the time of diagnosis. RESULTS: Sequencing was done using diagnostic serum samples from 814 individuals with new HIV-1 diagnoses spanning this 4 year period. Characteristics of individuals diagnosed in 2020 differed from those from other years. DPI analysis showed that people of color diagnosed in 2021 were on average 6 months delayed in their diagnosis compared to those diagnosed in 2020. There was a trend that genetic networks were more known for individuals diagnosed in 2021. We observed no major integrase resistance mutations over the course of the study. CONCLUSIONS: SARS-CoV-2 pandemic may contribute to the spread of HIV-1. Public health resources need to focus on restoring HIV-1 testing and interrupting active, ongoing, transmission.

2.
Virus Evol ; 9(1): vead028, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-20234910

RESUMEN

Inference of effective population size from genomic data can provide unique information about demographic history and, when applied to pathogen genetic data, can also provide insights into epidemiological dynamics. The combination of nonparametric models for population dynamics with molecular clock models which relate genetic data to time has enabled phylodynamic inference based on large sets of time-stamped genetic sequence data. The methodology for nonparametric inference of effective population size is well-developed in the Bayesian setting, but here we develop a frequentist approach based on nonparametric latent process models of population size dynamics. We appeal to statistical principles based on out-of-sample prediction accuracy in order to optimize parameters that control shape and smoothness of the population size over time. Our methodology is implemented in a new R package entitled mlesky. We demonstrate the flexibility and speed of this approach in a series of simulation experiments and apply the methodology to a dataset of HIV-1 in the USA. We also estimate the impact of non-pharmaceutical interventions for COVID-19 in England using thousands of SARS-CoV-2 sequences. By incorporating a measure of the strength of these interventions over time within the phylodynamic model, we estimate the impact of the first national lockdown in the UK on the epidemic reproduction number.

3.
JMIR Form Res ; 7: e39409, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2302523

RESUMEN

BACKGROUND: In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE: The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS: In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS: We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS: This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.

4.
EClinicalMedicine ; 37: 100968, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1290307

RESUMEN

BACKGROUND: We evaluated features of HIV transmission networks involving persons diagnosed during incident HIV infection (IHI) to assess network-based opportunities to curtail onward transmission. METHODS: Transmission networks were constructed using partial pol sequences reported to North Carolina surveillance among persons with recent (2014-2018) and past (<2014) HIV diagnoses. IHI were defined as documented acute infections or seroconversion. Demographic and virologic features of HIV genetic clusters (<1.5% pairwise genetic distance) involving ≥ 1 IHI were assessed. Persons with viral genetic links and who had diagnoses >90 days prior to an IHI were further characterized. We assessed named partner outcomes among IHI index persons using contact tracing data. FINDINGS: Of 4,405 HIV diagnoses 2014-2018 with sequences, there were 323 (7%) IHI index persons; most were male (88%), Black (65%), young (68% <30 years), and reported sex with men (MSM) risk (79%). Index persons were more likely to be cluster members compared to non-index persons diagnosed during the same period (72% vs. 49%). In total, 162 clusters were identified involving 233 IHI, 577 recent diagnoses, and 163 past diagnoses. Most IHI cases (53%) had viral linkages to ≥1 previously diagnosed person without evidence of HIV viral suppression in the year prior to the diagnosis of the IHI index. In contact tracing, only 53% IHI cases named an HIV-positive contact, resulting in 0.5 previously diagnosed persons detected per IHI investigated. When combined with viral analyses, the detection rate of viremic previously diagnosed persons increased to 1.3. INTERPRETATION: Integrating public health with molecular epidemiology, revealed that more than half of IHI have viral links to persons with previously diagnosed unsuppressed HIV infection which was largely unrecognized by traditional contact tracing. Enhanced partner services to support engagement and retention in HIV care and improved case finding supported by rapid phylogenetic analysis are tools to substantially reduce onward HIV transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA